each element needs to be about 1% or 2% longer than a simple dipole at the same frequency. As a rule of thumb, use 477/f (in feet) instead of the usual 468/f when calculating dipole length, and 239/f instead of 234/f for a λ /4 vertical.

A 30/17/12-Meter Dipole

To show how a C-R antenna is designed, let's build a dipole to cover all three WARC bands. We'll use #12 wire, which has a diameter of 0.08 inches, and the main dipole will be cut for the 10.1 MHz band. From the equation above, the spacing between the main dipole and the 18-MHz resonator should be 2.4 inches for 72 Ω , or 1.875 inches for 50 Ω . At 24.9 MHz, the spacing to the resonator for that band should be 2.0 inches for 72 Ω , or 1.62 inches for 50 Ω . Of course, this antenna will be installed over real ground, not in free space, so these spacing distances may not be exact. Plugging these numbers into your favorite antenna-modeling program will let you optimize the dimensions for installation at the height you choose.

For those of you who like to work with real antennas, not computer-generated ones, the predicted spacing is accurate enough to build an antenna with minimum trial-anderror. You should use a nice round number just larger than

Fig 47—Dimensions of a C-R dipole for the 30, 17 and 12-meter bands.

the calculated spacing for 50 Ω . For this antenna, K9AY decided that the right spacing for the desired height would be 2 inches for the 18 MHz resonator and 1.8 inches for the 24.9 MHz resonator. For simplicity of construction, he just used 2 inches for both, figuring that the worst he would get is a 1.2:1 SWR if the numbers were a little bit off. Like all dipoles, the impedance varies with height above ground, but the 2-inch spacing results in an excellent match on the two additional bands, at heights of more than 25 feet.

The final dimensions of the dipole for 10.1, 18.068 and 24.89 MHz are shown in **Fig 47**. These are the final pruned lengths for a straight dipole installed at a height of about 40 feet. If you put up the antenna as an inverted V, you will need each wire to be a bit longer. Pruning this type of antenna is just like a dipole—if it's resonant too low in frequency, it's too long and the appropriate wire needs to be shortened. So, you can cut the wires just a little long to start with and easily prune them to resonance.

A final note: if you want to duplicate this antenna design, remember that the 2-inch spacing is just for #12 wire! The required spacing for a C-R antenna is related to the conductor diameter. This same antenna built with #14 wire needs under 1½-inch spacing, while a 1-inch aluminum-tubing version requires about 7-inch spacing.

Summary

The coupled-resonator principle is one more weapon in the antenna designer's arsenal. It's not the perfect method for all multiband antennas, but what the C-R principle offers is an alternative to traps and tuners, in exchange for using more wire or aluminum. Although a C-R antenna requires more complicated construction, its main attraction is in making a multiband antenna that can be built with no compromise in matching or efficiency.

HF Discone Antennas

The material in this section is adapted from an article by Daniel A. Krupp, W8NWF, in *The ARRL Antenna Compendium, Vol 5*. The name *discone* is a contraction of the words disc and cone. Although people often describe a discone by its design-center frequency (for example, a "20-meter discone"), it works very well over a wide frequency range, as much as several octaves. **Fig 48** shows a typical discone, constructed of sheet metal for UHF use. On lower frequencies, the sheet metal may be replaced with closely spaced wires and/or aluminum tubing.

The dimensions of a discone are determined by the lowest frequency of use. The antenna produces a vertically polarized signal at a low-elevation angle and it presents a good match for $50-\Omega$ coax over its operating range. One

advantage of the discone is that its maximum current area is near the top of the antenna, where it can radiate away from ground clutter. The cone-like skirt of the discone radiates the signal—radiation from the disc on top is minimal. This is because the currents flowing in the skirt wires essentially all go in the same direction, while the currents in the disc elements oppose each other and cancel out. The discone's omnidirectional characteristics make it ideal for roundtable QSOs or for a Net Control station.

Electrical operation of this antenna is very stable, with no changes due to rain or accumulated ice. It is a self-contained antenna—unlike a traditional ground-mounted vertical radiator, the discone does not rely on a ground-radial system for efficient operation. However, just like any other vertical

Fig 48—Diagram of VHF/UHF discone, using a sheetmetal disc and cone. It is fed directly with 50- Ω coax line. The dimensions L and D, together with the spacing S between the disc and cone, determine the frequency characteristics of the antenna. L = 246 / f_{MHz} for the lowest frequency to be used. Diameter D should be from 0.67 to 0.70 of dimension L. The diameter at the bottom of the cone B is equal to L. The space S between disc and cone can be 2 to 12 inches, with the wider spacing appropriate for larger antennas.

antenna, the quality of the ground in the Fresnel area will affect the discone's far-field pattern.

Both the disc and cone are inherently balanced for wind loading, so torque caused by the wind is minimal. The entire cone and metal mast or tower can be connected directly to ground for lightning protection.

Unlike a trap vertical or a triband beam, discone antennas are not adjusted to resonate at a particular frequency in a ham band or a group of ham bands. Instead, a discone functions as a sort of high-pass filter, efficiently radiating RF all the way from the low-frequency design cutoff to the highfrequency limits imposed by the physical design.

While VHF discones have been available out-of-thebox for many years, HF discones are rare indeed. Some articles have dealt with HF discones, where the number of disc elements and cone wires was minimized to cut costs or to simplify construction. While the minimalist approach is fine if the sought-after results really are obtained, W8NWF believes in building his discones without compromise.

History of the Discone

The July 1949 and July 1950 issues of CQ magazine both contained excellent articles on discones. The first article, by Joseph M. Boyer, W6UYH, said that the discone was developed and used by the military during World War II. (See Bibliography.) The exact configuration of the top disc and cone was the brainchild of Armig G. Kandonian. Boyer described three VHF models, plus information on how to build them, radiation patterns, and most importantly, a detailed description of how they work. He referred to the discone as a type of "coaxial taper transformer."

The July 1950 article was by Mack Seybold, W2RYI. He described an 11-MHz version he built on his garage roof. The mast actually fit through the roof to allow lowering the antenna for service. Seybold stated that his 11-MHz discone would load up on 2 meters but that performance was down 10 dB compared to his 100-MHz Birdcage discone. He commented that this was caused by the relatively large spacing between the disc and cone. Actually, the performance degradation he found was caused by the wave angle lifting upward at high frequencies. The cone wires were electrically long, causing them to act like long wire antennas. See **Fig 49**.

W8NWF's First Discone: the A-Frame Discone

The first discone was one designed to cover 20 through 10 meters without requiring an antenna tuner. The cone assembly uses 18-foot long wires, with a 60° included apex angle and a 12-foot diameter disc assembly. See **Fig 50** and **Fig 51**. The whole thing was assembled on the ground, with the feed coax and all guys attached. Then with the aid of some friends, it was pulled up into position.

The author used a 40-foot tall wooden "A-frame" mast, made of three 22-foot-long $2 \times 4s$. He primed the mast with sealer and then gave it two coats of red barn paint to make it look nice and last a long time. The disc hub was a 12-inch length of 3-inch schedule-40 PVC plumbing pipe. The PVC is very tough, slightly ductile, and easy to drill and cut. PVC is well suited for RF power at the feed point of the antenna.

Three 12-foot by 0.375-inch OD pieces of 6061 aluminum, with 0.058-inch wall thickness, were used for the 12-foot diameter top disc. These were cut in half to make the center portions of the six telescoping spreaders. Four twelve foot by 0.250-inch OD (0.035-inch wall thickness) tubes were cut into 12 pieces, each 40 inches long. This gave extension tips for each end of the six spreaders.

See **Fig 52** for details on the disc hub assembly. W8NWF started by drilling six holes straight through the PVC for the six spreaders, accurately and squarely, starting

Fig49—Computed elevation plot over average ground for W8NWF's small discone at 146 MHz, ten times its design frequency range. The cone wires are acting as long-wire antennas, distorting severely the low-elevation angle response, even though the feed-point impedance is close to 50 Ω .

Fig 50—Photo of W8NWF's original A-frame mounted HF discone.

Fig 51—Detailed drawing of the A-frame discone for 14 to 30 MHz. The disc assembly at the top of the A-frame is 12 feet in diameter. There are 45 cone wires, each 18 feet long, making a 60° included angle of the cone. This antenna works very well over the design frequency range.

about two inches down from the top and spaced radially every 30°. Each hole is 0.375 inches below the plane of the previous one. Take great care in drilling—a poor job now will look bad from the ground up for a long time! It's a good idea to make up a paper template beforehand. Tape this to the PVC hub and then drill the holes, which should make for a close fit with the elements. If you goof, start over with a new piece of PVC—it's cheap.

Each six-foot spreader tube was secured exactly in the center to clear a 6-32 threaded brass rod that secured the elements mechanically and electrically. A two-foot long by $\frac{1}{4}$ -inch OD wooden dowel was inserted into the middle of each six-foot length of tubing. The dowel added strength and also prevented crushing the element when the nuts on the threaded rod were tightened.

Insert the 40-inch long extensions four inches into each end of the six-foot spreaders. Mark and drill holes to pin the telescoping tips, plus holes big enough to clear #18 soft-drawn copper wire. This was for the inner circumferential wire for the disc. Drill a single hole for #18 wire about ¼ inch from each extension element tip, through which passes the outer circumferential wire. Finally, insert all 6-foot elements into

the PVC hub and line up the holes in the center so the brass rod could be inserted through the middle to secure the elements.

The next step is to "chisel to fit" the top of my wooden mast to allow the PVC to slide down on it about six or seven inches. For convenience, place the whole mast assembly in a horizontal position on top of two clothesline poles and one stepladder.

Place the disc head assembly over the top of the mast, but don't secure it yet. This allows for rotation while adding the disc spreader extensions. A tip for safety: tie white pieces of cloth to the ends of elements near eye level. Just remember to remove them before raising the antenna.

For a long-lasting installation, use an anti-corrosion compound, such as Penetrox, when assembling the aluminum antenna elements. As the extensions are added, secure them in the innermost of the two holes with a short piece of #18 wire. Then run a wire through the remaining holes looping each element as you go. This gives added support laterally to the elements. Next add a #18 wire to the tips of the extensions in the same fashion. This provides even more

Fig 52—Details of the top hub for the A-frame discone. The three-inch PVC pipe was drilled to hold the six spreaders making up the top disc. Connections for the shield of the feed coax were made to the disc. The coax center conductor was connected to the cone-wire assembly by means of a loop of #12 stranded wire encircling the outside of the PVC hub.

physical stability as well as making electrical connections.

Next, pin the PVC disk hub to the wooden mast with a ³/₈-inch threaded rod. This is also the point where the cone wires are attached, using a loop of #12 stranded copper wire around the PVC. Solder each cone wire to this loop, together with the coax shield braid. Make sure the loop of #12 wire is large enough to make soldering possible without burning the PVC with the soldering iron.

Connect the coax center conductor to the disc assembly by securing it with the same 6-32 threaded rod that ties all the disc elements together. Make sure to use coax-seal compound to keep moisture out of the coax. The coax is then fed down the mast and secured in a few places to provide strain relief and to keep it out of the way of the cone wires.

Use two sets of three guy wires. Break these up with egg insulators, just to be sure there won't be any interaction with the antenna. Use 45 wires of #18 soft-drawn copper wire

for the cone, 18 feet long each. Cut them a little long so they can be soldered to the connecting loop.

A difficult task is now at hand—keeping all the cone wires from getting tangled! Solder each of the 45 cone wires to the loop of #12 wire, spacing each wire about ¹/₄ inch from the last one for an even distribution all the way around.

The cone base is 18 feet in diameter to provide a 60° included angle. At the base of the cone, use five 12-foot long aluminum straps, 1 inche wide by $\frac{1}{8}$ inch thick, overlapping $\frac{81}{4}$ inches and fastened together with aluminum rivets. Drill holes along the strap every 15 inches to secure the cone wires.

Make sure to handle the aluminum strap carefully while fastening the cone wire ends; too sharp of a bend could possibly break it. Fasten six small-diameter nylon lines to the cone-base aluminum strap to stabilize the cone. These cone-guys share the same guy stakes as the mast guy lines. After cutting the nylon lines, heat the frayed ends of each with a small flame to prevent unraveling. Apply several coats of clear protective spray to the disk head assembly, after checking that all hardware is tight. A rain cap at the top of the PVC disc hub completes construction.

Putting It All Up

You are going to need a lot of help now to raise this antenna. Have the whole process fully thought out before trying to raise it. You should have the spot selected for the base of the mast and some pipes driven into the ground to prevent the mast from slipping sideways as it is being pulled up. The three guy stakes should be in place, 23 feet, $1\frac{1}{2}$ inches from mast center. Of course, the guys should have been cut to the correct length, with some extra. Be sure the coax transmission line will come off the mast where it should. A long length of rope to an upper and lower guy line is used to pull up the whole works.

The author used an old trick of standing an extension ladder vertically near the antenna base with the pull lines looped over the top rung to get a good lift angle. The weight added to the mast from the antenna disc assembly and cone wires is about 26 pounds, most of it from the cone assembly. Use two strong people to pull up the antenna slowly so that the other helpers on the guy wires and cone guy lines have time to move about as required. As the antenna rises to the vertical position, if there are no snafus, the guy lines can be secured. Then tie the six cone lines to stakes.

The second major change was to widen the apex angle out from 60° to about 78° . Modeling said this should produce a flatter SWR over the frequency spectrum and would also give a better guy system for the tower.

The topside disc assembly would be 27 feet in diameter and have 16 radial spreaders, using telescoping aluminum tubing tapering from $\frac{5}{4}$ to $\frac{1}{2}$ to $\frac{3}{8}$ inches OD. All spreaders were made from 0.058-inch wall thickness 6063-T832 aluminum tubing, available from Texas Towers. A section of 10-inch PVC plumbing pipe would be used as the hub for construction of the disc assembly.

Construction Details for the Large Discone.

While installing the tower, the author had left the top section on the ground. This allowed him to fit the disc head assembly precisely to it. **Fig 53** shows the overall plan for the large discone. The 10-inch diameter PVC hub was designed to slip over the tower top section, but was a little too large. So a set of shims was installed on the three legs at the top of the tower for a just-right fit. Drilling the PVC pipe for the eight $\frac{1}{3}$ -inch OD elements was started about an inch down from the top. W8NWF purposely staggered the drilled holes in the same fashion as the hub for the smaller antenna. See **Fig 54**.

Again, three-foot sections of $\frac{1}{2}$ -inch wooden dowel were used to strengthen the $\frac{5}{4}$ -inch center portion of each spreader. Instead of using a loop of #12 wire for connecting the cone wires, as had been done on the smaller discone, he drilled 36 holes in the PVC hub. These holes are small enough so

A Really Big Discone

When an opportunity arose to buy a 64-foot self-supporting TV tower, the author jumped at the chance to implement a full 7 to 30-MHz discone. His new tower had eight sections, each eight feet long. Counting the overlap between sections, the cone wires would come off the tower at about the 61.5foot mark.

W8NWF took some liberties with the design of this larger discone compared to the first one, which he had done strictly "by the book." The first change was to make the cone wires 70 feet long, even though the formula said they should be 38 feet long. Further, the cone wires would not be connected together at the bottom. With the longer cone wires, he felt that 75 and 80-meter operation might be a possibility.

Fig 53—The large W8NWF discone, designed for operation from 7 to 14 MHz, but useable with a tuning network in the shack for 3.8 MHz.

Fig 54—Photo showing details of the hub assembly for the large discone, including the threaded brass rod that connects the radial spreaders together. The 10-inch PVC pipe is drilled to accommodate the radial spreaders. Each spreader is reinforced with a three-foot long wooden dowel inside for crush resistance. Note the row of holes drilled below the lowest spreader. Each of the 36 cone wire passes through one of these holes.

that the PVC hub would not be weakened appreciably. He drilled the circles of holes for the cone wires about 6 inches below the disc spreaders.

He prepared a three-foot long piece of RG-213 coax, permanently fastened on one end to the antenna, with a female type-N connector at the other end. Type-N fittings were used because of their superior waterproofing abilities. The coax center lead was connected with a terminal lug under a nut on the brass threaded rod securing the disc spreaders. The coax shield braid was folded back over a six-inch long copper pipe and clamped to it with a stainless-steel hose clamp. See **Fig 55** for details.

Fig 55—Details of the copper pipe slipped over the feed coax. The coax shield has been folded back over the copper pipe and secured with two stainless-steel hose clamps. The cone wires are also laid against the copper pipe and secured with additional hose clamps.

The plan was that after the top disc assembly had been hoisted up and attached at the top of the tower, individual cone wires would be fed, one at a time, through the small holes drilled in the PVC. They were to be laid against the copper pipe and secured with stainless-steel hose clamps.

The $\frac{1}{2}$ and $\frac{3}{8}$ -inch OD spreader extension tips were secured in place with two aluminum pop-rivets at each joint. Again, the author used anti-oxidant compound on all spreader junctions. He drilled a hole horizontally near the tip of each $\frac{3}{8}$ -inch tip all around the perimeter to allow a #8 aluminum wire to circle the entire disc. A small stainless-steel sheetmetal screw was threaded into the end of each element to

secure the wire.

In parallel with the aluminum wire, a length of small-diameter black Dacron line was run, securing it in a couple of places between each set of spreaders with UV-resistant plastic tie-wraps. The reason for doing this was to hold the aluminum wire in position and to prevent it from dangling, in case it should break some years in the future. Two coats of clear protective spray were applied for protection.

A truss system helps prevent the disc from sagging due to its own weight. See **Fig 56** for details. This shows the completed disk assembly mounted on the

Fig 56—Photo of the spreader hub assembly, showing the truss ropes above and below the radial spreaders. This is a very rugged assembly!

Fig 57—Photo showing some of the fence posts used to hold individual cone wires to keep them off the ground and out of harm's way. The truck in the background is carting away the A-frame discone for installation at KA8UNO's QTH.

top of the tower. A 3-foot length of 2-inch PVC pipe was used for a truss mast above the disc assembly, notching the bottom of the pipe so that it would form a saddle over the top couple of spreaders. This gave a good foothold. He cut a circle of thin sheet aluminum to fit over the 10-inch PVC to serve as a rain cap. The cap has a hole in the center for the two-inch PVC truss mast to pass through, thereby holding it down tight. The author sprayed a few light coats of paint over the PVC for protection from ultraviolet radiation from the sun.

Sixteen small-diameter black Dacron ropes were connected at the top of the truss support mast, with the other ends fastened to the disc spreaders, halfway out. Another rain cap was added to the top of the two-inch PVC truss mast. Eight lengths of the same small diameter Dacron rope were added halfway out the length of every other spreader. These ropes are meant to be tied back to the tower, to prevent updrafts from blowing the disc assembly upwards. Small egg insulators were used near the spot where the eight bottom trusses were tied to the disc spreaders, just to be sure there would be no RF leakage in rainy weather.

Hoisting the completed disc assembly to the top of the tower can be done easily, with the assistance of at least two others. The trickiest part is to get the disc assembly from its position sitting flat on the ground to the vertical position needed for hoisting it up the tower without damaging it. The disc assembly weighs about 35 pounds. Someone at the top of the tower will receive the disc as it is hoisted up by gin pole, and can mount it on the tower top.

You should prepare three 6-foot long metal braces going over the outside of the PVC to fasten to the tower legs. They really beef things up.

In plastic irrigation pipe buried between the house and tower base, the author ran 100 feet of 9086 low-loss coax to the shack. For cone wires, he was able to obtain some #18 copperclad steel wire, with heavy black insulation that looked a lot like neoprene. The cone system takes a lot of

7-32 Chapter 7

wire: 36×70 feet = 2520 feet, plus some extra at each end for termination. You'd be well advised to look around at hamfests to save money.

As each cone wire was connected at the top of the tower, a helper should place the other end at its proper spot below. The lower end of each cone wire is secured to an insulator screwed into a fencepost. See **Fig 57**. There are 36 treatedpine fenceposts, each standing about $5\frac{1}{2}$ feet tall, 45 feet from the tower base to hold the lower end of the cone wires. This makes mowing the grass easier and the cone wires are less likely to be tripped over too.

On the final trip down the tower, the eight Dacron downward-truss lines were tied back to the tower about 6 feet below the disc assembly. The author's tower has three ground rods driven near the base, connected with heavy copper wire to the three tower legs.

Fig 58—Computed patterns showing elevation response of small discone at 28.5 MHz compared to that of the larger discone at 28.5 MHz. The cone wires are clearly too long for efficient operation on 10 meters, producing unwanted high-angle lobes that rob power from the desirable low-elevation angles.

Performance Tests

On the air tests proved to be very satisfying. Loading up on 40 meters was easy—the SWR was 1:1 across the entire band. W8NWF can work all directions very well and receives excellent signal reports from DX stations. When he switches to his long (333 foot) center-fed dipole for comparison, he finds the dipole is much noisier and that received signals are weaker. During the daytime, nearby stations (less than about 300 to 500 miles) can be louder with the dipole, but the discone can work them just fine also.

The author happily reports that this antenna even works well on 75 meters. As you might expect, it doesn't present a 1:1 match. However, the SWR is between 3.5:1 and 5.5:1 across the band. W8NWF uses an antenna tuner to operate the discone on 75. It seems to get out as well on 75 as it does on 40 meters.

The SWR on 30 meters is about 1.1:1. On 20 meters the SWR runs from 1.05:1 at 14.0 MHz to 1.4:1 at 14.3 MHz. The SWR on the 17, 15, 12 and 10-meter bands varies, going up to a high of 3.5:1 on 12 meters.

Radiation Patterns for the Discones

From modeling using *NEC/Wires* by K6STI, W8NWF verified that the low-angle performance for the bigger antenna is worse than that for the smaller discone on the upper frequencies. See **Fig 58** for an elevation-pattern comparison on 10 meters for both antennas, with average ground constants. The azimuth patterns are simply circles. Radiation patterns produced by antenna modeling programs are very helpful to determine what to expect from an antenna.

The smaller discone, which was built by the book, displays good, low-angle lobes on 20 through 10 meters. The frequency range of 14 through 28 MHz is an octave's worth of coverage. It met his expectations in every way by covering this frequency span with low SWR and a low angle of radiation.

The bigger discone, with a modified cone suitable for use on 75 meters, presents a little different story. The lowangle lobe on 40 meters works well, and 75-meter performance also is good, although an antenna tuner is necessary on this band. The 30-meter band has a good low-angle lobe

Fig 59—Computed elevation-response patterns for the larger W8NWF discone for 3.8, 7.2 and 21.2 MHz operation. Again, as in Fig 58, the pattern degrades at 21.2 MHz, although it is still reasonably efficient, if not optimal.

but secondary high-angle lobes are starting to hurt performance. Note that 30 meters is roughly three times the design frequency of the cone. On 20 and 17 meters there still are good low-angle lobes but more and more power is wasted in high-angle lobes.

The operation on 15, 12, and 10 meters continues to worsen for the larger discone. The message here is that although a discone may have a decent SWR as high as 10 times the design frequency, its radiation pattern is not necessarily good for low-angle communications. See **Fig 59** for a comparison of elevation patterns for 3.8, 7.2 and 21.2 MHz on the larger discone.

A discone antenna built according to formula will work predictably and without any adjustments. One can modify the antenna's cone length and apex angle without fear of rendering it useless. The broadband feature of the discone makes it attractive to use on the HF bands. The low angle of radiation makes DX a real possibility, and the discone is also much less noisy on receive than a dipole.

Probably the biggest drawback to an HF discone is its bulky size. There is no disguising this antenna! However, if you live in the countryside you should be able to put up a nice one.